کنترل بار-فراکانس یک سیستم قدرت به کمک کنترل کننده PSO

مقدمه

به طور معمول و رایج، طراحی و کنترل سیستم‌های قدرت با نظر گرفتن معیار‌های کلیدی پایداری، قابلیت اطمینان و امید انجام می‌شود. به همین دلیل، سیستم‌های قدرت می‌توانند با وجود خطاهای شنایخته شده و مشخص در یک دوره طولانی، سریع‌سی سریع‌سی

اگر مورد نظر و در این مورد، کنترل بار-فراکانسی یکی از مهم‌ترین مشکلات در سیستم‌های قدرت است. در این مقاله، یکی از سیستم‌های کنترل بار-فراکانسی به کمک الگو بهینه سازی پیوسته (PSO) معرفی و بررسی می‌شود.

چکیده: در این مقاله روشی برای کنترل فراکانس یک سیستم قدرت به کمک الگو بهینه سازی پیوسته (PSO) معرفی و بررسی می‌شود. این الگو بهینه سازی پیوسته در حوزه‌های مختلفی از مدل‌سازی، سیستم‌های مدل‌سازی، سیستم‌های مدل‌سازی، سیستم‌های مدل‌سازی، سیستم‌های مدل‌سازی، سیستم‌های مدل‌سازی، سیستم‌های مدل‌سازی و سیستم‌های مدل‌سازی استفاده می‌شود. در این مقاله، الگو بهینه سازی پیوسته برای کنترل فراکانس یک سیستم قدرت به کمک الگو بهینه سازی پیوسته (PSO) معرفی و بررسی می‌شود.

کامال منتظری، شاهروشم جعافی، شوژائیان، لتوی

Kamal.Montazeri@iaukhsh.ac.ir

Shojaeian@iaukhsh.ac.ir

Lotfi@iaukhsh.ac.ir

1. دانش آموخته کارشناسی ارشد، دانشگاه فنی مهندسی، دانشگاه آزاد اسلامی، واحد خمینی شهر

2. استادیار، گروه برق، دانشگاه فنی مهندسی، دانشگاه آزاد اسلامی، واحد خمینی شهر

3. مربی، گروه برق، دانشگاه فنی مهندسی، دانشگاه آزاد اسلامی، واحد خمینی شهر

4. ژورنال آزمایش می‌باشد.
ولی این مسئله هنوز به صورت کامل حل نشده است. به همین دلیل در این بیوگرافی به این موضوع برداخته شده است.

کنترل کننده به وسیله کنترل توده افق مانند است که مطالعات قابلیت استفاده از نمایشگر راه حل شده در هد مطالعات مقاوم و دقیق است. عملکرد روش پیشنهادی روي یک شبکه قدرت سه ناحیه‌ای ناوت بخواهد شد.

2- مدل سازی سیستم قدرت سه ناحیه‌ای

مدل غیرخطی یک سیستم قدرت حرارتی به‌هم پوسته سه‌ناحیه‌ای در شکل (1) نشان داده شده است.

![جدول 1: بلوک دیاگرام سیستم قدرت سه ناحیه‌ای به‌هم پوسته غیرخطی با کنترل کننده مدر است](image-url)
در این سیستم هر ناحیه شامل یک زندران و یک گوارنر، یک توربین و یک کنترل نسبی بر فرکانس بینی، برای مقدار این فرکانس، ناحیه اول توربین به سه ناحیه با هم متغیر است. توربین ناحیه اول بزرگ، بزرگ‌ترین توربین ناحیه دوم و توربین ناحیه سوم را تشکیل می‌دهند.

\[G_r(s) = \frac{\Delta P_r(s)}{\Delta P_r(s)} - \Delta P_m(s) = \frac{K_p}{1 + sT_p} \] (4)

در این سیستم، برای تغییرات بار با \(P_m \) و تغییرات توان مادیر \(P_L \) ناحیه اول تغییرات \(\Delta P_r \) برای ناحیه دوم تغییرات \(\Delta P_r \) و برای ناحیه سوم تغییرات \(\Delta P_r \) است. این معادله به صورت زیر نوشته می‌شود:

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (5)

\[ACE_{mi} = \sum_{j=1}^{N} \Delta P_{rj} + B_i \Delta f_r \] (6)

در شرایط واقعی، گوگنر غیرخطی است و همافکت داره که در شکل (2) نشان داده شده است.این سیستم به‌طور سریالی و با استفاده از یک سیستم فیزیکی، هر کدام یک مقدار مشخص و باعث شده است که در این سیستم ناحیه اول تغییرات بار با \(P_m \) و تغییرات توان مادیر \(P_L \) تغییرات \(\Delta P_r \) را به صورت زیر تعریف می‌شود:

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (7)

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (8)

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (9)

در این سیستم، هر ناحیه شامل یک زندران و یک گوارنر، یک توربین و یک کنترل نسبی بر فرکانس بینی، برای مقدار این فرکانس، ناحیه اول تغییرات بار با \(P_m \) و تغییرات توان مادیر \(P_L \) ناحیه اول تغییرات \(\Delta P_r \) برای ناحیه دوم تغییرات \(\Delta P_r \) و برای ناحیه سوم تغییرات \(\Delta P_r \) است. این معادله به صورت زیر نوشته می‌شود:

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (10)

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (11)

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (12)

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (13)

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (14)

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (15)

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (16)

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (17)

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (18)

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (19)

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (20)

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (21)

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (22)

\[\Delta P_{mi} = 2\pi f^2 U_m (\Delta f_m - \Delta f_r) \] (23)
3-1 طراحی کنترل گرمایش

برای تغییر SMC برای توربین بازگرمایش

در این بخش طراحی SMC در ناحیه 1 با توربین بدون بازگرمایش وضعیت داده می‌شود. فرض آن است که کنترل کلیدی SMC به صورت بهتر از کنترل سنتزی استفاده شده باشد. انتخاب صفحه لغش اولین مرحله طراحی کنترل گرمایش می‌باشد. کنترل کلیدی SMC که مصرف مصرف و مصرف و سیستم بازگرمایش لغش می‌باشد، و مصرف SMC می‌باشد. سیستم مصرف بازگرمایش شده باشد. اگر علامت فرآیند لغش متغیر باشد، کنترل کلیدی

\[
\begin{align*}
\Delta P &= \Delta P \cdot \text{sgn}(s(t)) \\

\text{s}(t) &= \frac{d}{dt} \left(x - \Delta P \cdot \text{sgn}(s(t)) \right)
\end{align*}
\]

در این رابطه، \(s(t) \) از دیدگاه سیستم مصرف گرمایش، \(x \) در این مدل استفاده می‌شود. \(\Delta P \) از دیدگاه سیستم مصرف گرمایش می‌باشد. سیستم کنترل در ناحیه 2 با انتخاب دارای بازگرمایش را نشان می‌دهد.

3-2 طراحی SMC برای توربین هیدروپلیک

در این بخش، تغییر SMC برای توربین هیدروپلیک

\[
\begin{align*}
\Delta P &= \Delta P \cdot \text{sgn}(s(t)) \\

\text{s}(t) &= \frac{d}{dt} \left(x - \Delta P \cdot \text{sgn}(s(t)) \right)
\end{align*}
\]

در این بخش، SMC به وسیله سیستم بازگرمایش دارای انتخاب دارای بازگرمایش را نشان می‌دهد.

3-3 طراحی کنترل گرمایش

\[
\begin{align*}
\Delta P &= \Delta P \cdot \text{sgn}(s(t)) \\

\text{s}(t) &= \frac{d}{dt} \left(x - \Delta P \cdot \text{sgn}(s(t)) \right)
\end{align*}
\]

به عنوان سنجش نهایی به هم پیوسته، تغییرات توربین بازگرمایش و توربین دارای بازگرمایش و توربین هیدروپلیکی توصیف داده می‌شود. طراحی

\[
ACE = \sum_{j=1}^{2} AP_j + AP_j'
\]

در ادامه فرآیند طراحی کنترل گرمایش

\[
\begin{align*}
\Delta P &= \Delta P \cdot \text{sgn}(s(t)) \\

\text{s}(t) &= \frac{d}{dt} \left(x - \Delta P \cdot \text{sgn}(s(t)) \right)
\end{align*}
\]

به عنوان سنجش نهایی به هم پیوسته، تغییرات توربین بازگرمایش و توربین دارای بازگرمایش و توربین هیدروپلیکی توصیف داده می‌شود. طراحی

\[
ACE = \sum_{j=1}^{2} AP_j + AP_j'
\]

به عنوان سنجش نهایی به هم پیوسته، تغییرات توربین بازگرمایش و توربین دارای بازگرمایش و توربین هیدروپلیکی توصیف داده می‌شود. طراحی

\[
ACE = \sum_{j=1}^{2} AP_j + AP_j'
\]

به عنوان سنجش نهایی به هم پیوسته، تغییرات توربین بازگرمایش و توربین دارای بازگرمایش و توربین هیدروپلیکی توصیف داده می‌شود. طراحی
1- برای هیپنوماژی و پیشنهاداتی مرتبط با آن

بطور خلاصه در الگوریتم PSO، موفقیت در جستجوی بهینه سازی بارء و سرعت آن با توزین و پیشرفت‌های در اطلاعات موجود (Pbest) و موفقیت عملیاتی در این‌و آن نیز می‌تواند در اطلاعات کیفی قابل توجهی معرفی شود. البته در این‌و آن نیز می‌تواند در اطلاعات کیفی قابل توجهی معرفی شود. البته در این‌و آن نیز می‌تواند در اطلاعات کیفی قابل توجهی معرفی شود. البته در این‌و آن نیز می‌تواند در اطلاعات کیفی قابل توجهی معرفی شود. البته در این‌و آن نیز می‌تواند در اطلاعات کیفی قابل توجهی معرفی شود. البته...

2- بهینه‌سازی پارامترهای الگوریتمی

در بهینه‌سازی انجام شده، بیشترین پارامترهای کنترل کننده حداکثر 36 دقیقه و بهینه‌سازی پارامترهای کنترل مغلوب حداکثر حدود PI 5 دقیقه طول کشیده است. در شکل (2) روندهای همبسته تابع هزینه برای پارامترهای کنترل کننده می‌باشد. پارامتر (Gbest) نشان داده شده است. مشخص است که در بهینه‌سازی انجام شده، هزینه بهینه باید نهایی کمتر از کنترل کننده می‌باشد. پارامتر (Gbest) نشان داده شده است. مشخص است که در بهینه‌سازی انجام شده، هزینه بهینه باید نهایی کمتر از کنترل کننده M

3- سیستم کنترل بارء ناحیه دارای بهینه‌سازی

یک مدل کنترلی سیستم قدرت با تریه‌های هیدرولیکی را نشان می‌دهد. در این شکل، سیستم مورد نظر ناحیه ۳ می‌باشد و خروجی تابع جریه‌های است.
4- مقایسه عملکرد کنترل کننده SMC و PI

بهبود سازی پردازش‌های کنترلی با در نظر گرفتن افتضاحات مختلف برای هر یک از احتمالات شده است. سری‌های ول، در نظر گرفته شده برای بهبود سازی هر دو کنترل کننده به صورت زیر می‌باشد:

1. افزایش بر ناحیه اول در تابعی به میزان 100/6. پرودیت.
2. افزایش بر ناحیه دوم در تابعی به میزان 4/60. پرودیت.
3. افزایش بر ناحیه سوم در تابعی به میزان 4/60. پرودیت.

بر سری‌های کنترل، ناحیه وابسته به فرکانس در نظر گرفته شده است. بر در نظر گرفته شده برای ناحیه اول به صورت زیر است:

\[
\Delta P_{i}^* = \lambda \Delta P_{i} + \Delta P_{i}^1
\]

بر اساس شکل‌های (18) (19) مشخص است که از نظر فرآیند و زمان نصب، کنترل کننده SMC عملکرد بسیار بهتری در مقایسه با کنترل کننده PI داشته است.

در سری‌های دوم فرض شده است که به سه ناحیه به انداره 100/6. پرودیت تغییر کند. این تغییر برای نواحی اول و دوم به ترتیب در تابعی به میزان 4/60 و 1 اعمال شده است. برای این سری‌های، خطای فرکانس ناحیه 1.2 و 3 به ترتیب در شکل‌ها (15) (16) نشان داده شده است.

جدول (3) پارامترهای بهینه شده کنترل کننده SMC و PI

<table>
<thead>
<tr>
<th>پارامترهای کنترل کننده</th>
<th>SMC کنترل کننده</th>
<th>PI کنترل کننده</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_1)</td>
<td>2/88</td>
<td>0/30/6</td>
</tr>
<tr>
<td>(k_{11})</td>
<td>0/422</td>
<td>0/422</td>
</tr>
<tr>
<td>(k_2)</td>
<td>0/45</td>
<td>0/45</td>
</tr>
<tr>
<td>(k_{12})</td>
<td>0/432</td>
<td>0/432</td>
</tr>
<tr>
<td>(k_3)</td>
<td>0/422</td>
<td>0/422</td>
</tr>
<tr>
<td>(k_{13})</td>
<td>0/422</td>
<td>0/422</td>
</tr>
</tbody>
</table>

5- نتیجه‌گیری

در این مقاله یک سیستم کنترل سه ناحیه در نورپرداز متحمل شبیه‌سازی شد و درمحور اول پارامترهای کنترل کننده SMC و کنترل کننده SMC و کنترل کننده PSO به بهبود سازی در آن ادامه با کنترل کننده بر اساس آزمون‌های در نظر گرفته به سری‌های کنترلی که کنترل کننده در آن شرایط بهبودی یاب مورد بررسی قرار گرفت. از شیب‌های روش پیشنهادی این نتیجه حاصل گردید که خطای فرکانس ناحیه برای SMC کنترل کننده، SMC کنترل کننده، در دادن ضمن آنکه تغییر نقدی کار تانبری بر روی عملکرد کنترل کننده SMC تأثیر ندارد. این نتیجه دارد. SMC عملکرد مشابه است برای این مدل مختلف SMC عملکرد مثال‌هایی ارائه دهد. این موضوع نشان دهنده عملکرد مقاوم کنترل کننده SMC می‌باشد. به‌عنوان پیشنهادی‌ها چشم‌توم نواحی و تلاش دیگری SMC کنترل کننده پویا همیابی به موارد زیر اشاره نمود:

شکل (3) خطای فرکانس ناحیه اول برای سری‌های 1

شکل (4) خطای فرکانس ناحیه (ACE) در ناحیه اول برای سری‌های 1

شکل (5) کشیدگی کنترل کننده در ناحیه اول برای سری‌های 1

[20] Zhao, Y., “Applications of sliding mode controller & linear active disturbance rejection controller to a PMSM Speed System”, 2013 . ETD Archive. 411

- زمره مراجع و مالک:

زیرنویس ها

1. Energy Control Center
2. Load Frequency Control
3. Automatic Voltage Regulator
4. Integral Squared Error
5. Sliding Mode Controller
6. Criterion Performance Integral
7. North America Electric Reliability Corporation
8. Automatic Generation Control

رژومه

مهمی لطفی متولد ۱۳۵۷ در اصفهان است. وی مدرک کارشناسی و کارشناسی ارشد مهندسی برق- قدرت از دانشگاه صنعتی اصفهان (۱۳۸۰ و ۱۳۸۲) و دکتری مهندسی برق- قدرت را از دانشگاه آزاد واحد علوم و تحقیقات تهران(۱۳۹۱) دریافت کرده است. فعالیت‌های بنزنده و علاقه‌مندی‌های او در زمینه ادوات FACTS، پایداری و قابلیت اطمینان سیستم‌های قدرت است. از زمان حاضر استفاده می‌گردد دانشگاه آزاد اسلامی واحد خمینی شهر می‌باشد.

شاهرخ شجاعیان متولد ۱۳۵۴ در اصفهان است. وی مدرک کارشناسی و کارشناسی ارشد مهندسی برق- قدرت از دانشگاه صنعتی اصفهان (۱۳۷۶ و ۱۳۸۰) و دکتری مهندسی برق- قدرت را از دانشگاه آزاد واحد علوم و تحقیقات تهران(۱۳۹۱) دریافت کرده است. فعالیت‌های بنزنده و علاقه‌مندی‌های او در زمینه ادوات FACTS، پایداری و قابلیت اطمینان سیستم‌های قدرت است. از زمان حاضر استفاده می‌گردد دانشگاه آزاد اسلامی واحد خمینی شهر می‌باشد.

سعد کمال منظوری در کمیته‌های متولد شده است(۱۳۸۴) و کارشناسی مهندسی برق- قدرت از دانشگاه آزاد تهران (۱۳۸۱) و کارشناسی- ارشد مهندسی برق- قدرت از دانشگاه آزاد خمینی شهر (۱۳۹۶) دریافت کرده است. علاوه بر های بنزنده و علاقه‌مندی، فعالیت‌های پژوهشی ایشان با اینترنت و روشهای کنترلی به استفاده در سیستم‌های قدرت و سیستم‌ها و تجهیزات ابزاری دقیق در صنعت نفت و صنایع دیگر شرکت می‌باشد. وی در حاضر استاد مهندسی ایسینگ دیمکس شرکت پالایش نفت اصفهان می‌باشد.
LOAD-FREQUENCY CONTROL OF A POWER SYSTEM USING AN OPTIMIZED SLIDING MODE CONTROLLER

Seyed Kamal Montazeri, Shahrokh Shojaeian, Mehri Lotfi

Load frequency control (LFC) in power systems is one of the most important issues in the field of optimizing power system performance that attracted the attention of many researchers. In this work, a sliding mode based load frequency control is developed on a three-area interconnected power system. The power system contains non-reheat, reheat, and hydraulic turbines which are distributed in these three areas respectively. Both governor dead band and generation rate constraint are included in the model of this power system. Our control goal is to regulate the frequency error, tie-line power error and area control error despite the presences of external load disturbance and system uncertainties. Additionally, an optimization process is proposed for optimal adjustment of the sliding mode control parameters of each of the three areas, aimed at improving integral performance and step response characteristics such as amount of overshoot, steady state error, and sitting time. The optimization was performed using the particle swarm optimization (PSO) algorithm, which is one of the most powerful algorithms for nonlinear problems solving. The sliding mode based load frequency controller is simulated on this three-area interconnected nonlinear power system. The simulation results verify the effectiveness of the sliding mode controller. In addition, compared with an optimized the performance of SMC is comparison study shows the PI controller. The superiority of the SMC to the PI controller in term of control performance. They also demonstrate the robustness of the sliding mode controller against parameter variations and external disturbances.

Keywords: Load Frequency Control, Sliding Mode Control, Three-Area Interconnected Power System, Particle Swarm Optimization